CENTRO UNIVERSITÁRIO DA FEI

ENGENHARIA
CIÊNCIA DA COMPUTAÇÃO

VESTIBULAR
2º/2004

EXAME 2

FÍSICA
QUÍMICA
BIOLOGIA
HISTÓRIA E GEOGRAFIA
INSTRUÇÕES - EXAME 2

1. Verifique se este caderno contém 60 questões numeradas de 1 a 60.

2. A duração total da prova é de 4 (quatro) horas e a permanência mínima em sala é de 90 minutos.

3. As respostas das questões deverão ser transcritas para a Folha de Respostas, que somente poderá ser solicitada ao fiscal da sala após o prazo de 60 minutos. Antes de solicitar-la, preencha o rascunho dessa folha, que está impresso no seu caderno de questões.

4. Cada questão apresenta cinco alternativas, das quais somente uma é correta.

5. Preencha a Folha de Respostas com muito cuidado, pintando com caneta azul ou preta os alvéolos correspondentes às suas respostas. Não esqueça de assiná-la.

6. Serão consideradas erradas as questões não respondidas, respondidas com mais de uma alternativa ou com respostas rasuradas.

7. As respostas erradas não anulam as respostas certas.

8. Não é permitido o uso de calculadoras.
FÍSICA

Adotar $g = 10 \text{m/s}^2$

1ª Questão. Em uma piscina de bolinhas, têm-se bolinhas de 5 cm de diâmetro. Se fossem colocadas uma ao lado da outra, quantas bolinhas seriam necessárias para cobrir uma quadra de 100 m x 50 m?

(A) 1.10^6 bolinhas
(B) 2.10^6 bolinhas
(C) 4.10^6 bolinhas
(D) 5.10^6 bolinhas
(E) 1.10^5 bolinhas

2ª Questão. Em um rally de regularidade, o tempo total para se percorrer a distância de São Paulo até Aparecida do Norte é de 3 horas. Pelo caminho percorrido, a distância entre São Paulo e São José dos Campos é de 120 km e de São José dos Campos até Aparecida é de 125 km. Na hora da largada, uma pane mecânica fez um carro ficar parado durante 45 min. Qual é a velocidade deste carro, que mantida constante durante todo o trajeto, permite que o tempo total seja cumprido?

(A) $V = 80 \text{ km/h}$
(B) $V = 100 \text{ km/h}$
(C) $V = 120 \text{ km/h}$
(D) $V = 150 \text{ km/h}$
(E) $V = 180 \text{ km/h}$

3ª Questão. Um automóvel passa por um posto da polícia rodoviária estadual, situado a 20 km da fronteira do Estado, a uma velocidade de 144 km/h. Quando o automóvel passa em frente ao posto em direção à fronteira, um policial de motocicleta sai em perseguição ao automóvel. Sabendo-se que o automóvel permanece com velocidade constante, qual deve ser a aceleração mínima da motocicleta para que ele alcance o automóvel antes deste cruzar a fronteira?

(A) $a = 2,00 \text{ m/s}^2$
(B) $a = 1,00 \text{ m/s}^2$
(C) $a = 0,50 \text{ m/s}^2$
(D) $a = 0,36 \text{ m/s}^2$
(E) $a = 0,16 \text{ m/s}^2$
4ª Questão. João e Maria residem em um prédio e só possuem uma chave da porta de entrada. Ao sair, João tranca a porta e deve atirar a chave para Maria que se encontra a 11,5 m de altura em relação a João. Qual deve ser a mínima velocidade de lançamento da chave para que Maria a pegue?

(A) $V_{\text{min}} = 6,25 \text{ m/s}$
(B) $V_{\text{min}} = 10,0 \text{ m/s}$
(C) $V_{\text{min}} = 12,5 \text{ m/s}$
(D) $V_{\text{min}} = 15,2 \text{ m/s}$
(E) $V_{\text{min}} = 20,0 \text{ m/s}$

5ª Questão. No incêndio do prédio da Eletrobrás, ocorrido em fevereiro no Rio, placas de reboco se soltaram da parede e caíram sobre a rua. Por medida de segurança, os bombeiros tiveram que ficar o mais distante possível do prédio. Para isto, posicionaram suas mangueiras de modo a conseguir alcance máximo, ou seja, a 45º. Sabendo-se que a velocidade de saída do jato de água era de 30 m/s e desprezando-se a resistência do ar, qual era a distância entre o bombeiro e o edifício para que o mesmo conseguisse apagar o incêndio no ponto mais alto possível?
Considerar: sen 45º = cos 45º = 0,7.

(A) 10,2 m
(B) 21,4 m
(C) 31,1 m
(D) 44,1 m
(E) 88,2 m

6ª Questão. Uma máquina de lavar roupa gira com uma rotação $\omega = \frac{360}{\pi} \text{ rpm}$ (rotações por minuto). Sabendo-se que o tambor possui raio R = 25 cm, qual é a velocidade de uma gota de água ao sair pelo furo do tambor?

(A) 1,0 m/s
(B) 1,5 m/s
(C) 2,0 m/s
(D) 2,5 m/s
(E) 3,0 m/s
7ª Questão. Uma locomotiva de massa \(m = 50 \) ton está rebocando um vagão de massa \(m = 30 \) ton. A força que o motor exerce sobre a locomotiva é \(F = 200 \) kN. Qual é a aceleração do trem, sabendo-se que o movimento é horizontal? Obs.: desprezar atritos.

(A) \(a = 2,5 \) m/s
(B) \(a = 2,0 \) m/s
(C) \(a = 1,5 \) m/s
(D) \(a = 1,0 \) m/s
(E) \(a = 0,5 \) m/s

8ª Questão. Uma árvore de 3 m de altura produz uma sombra de 60 cm. No mesmo instante, um prédio produz uma sombra de 10 m. Qual é a altura do prédio?

(A) \(h = 60 \) m
(B) \(h = 50 \) m
(C) \(h = 40 \) m
(D) \(h = 30 \) m
(E) \(h = 20 \) m

9ª Questão. Em uma construção, um guindaste eleva verticalmente com velocidade constante um tambor de concreto inicialmente com massa \(m = 200 \) kg. Sabe-se que no tambor existe um furo por onde escorra concreto com vazão uniforme. Ao chegar no ponto 30 m acima do solo o tambor perdeu 40 kg de concreto. Qual é o trabalho realizado pelo guindaste para elevar o tambor a essa altura?

(A) \(W = 30 \) kJ
(B) \(W = 160 \) kJ
(C) \(W = 60 \) kJ
(D) \(W = 54 \) kJ
(E) \(W = 27 \) kJ

10ª Questão. Um alpinista no topo de uma montanha de 750 m de altura provoca uma avalanche de neve. Sabendo-se que no percurso até a base da montanha o atrito consome \(1/3 \) da energia, qual é a velocidade com que a neve chega à base da montanha?

(A) \(v = 250 \) m/s
(B) \(v = 100 \) m/s
(C) \(v = 75 \) m/s
(D) \(v = 50 \) m/s
(E) \(v = 25 \) m/s
11ª Questão. Em um tubo em U inicialmente vazio, colocou-se água até que o tubo estivesse preenchido pela metade. Depois colocou-se óleo do lado direito do tubo. Após o equilíbrio podemos afirmar que:

(A) A altura do lado esquerdo ficou maior que a do lado direito, pois a água é mais densa que o óleo.
(B) A altura do lado esquerdo ficou maior que a do lado direito pois a água é menos densa que o óleo.
(C) A altura do lado direito ficou maior que do lado esquerdo, pois a água é mais densa que o óleo.
(D) A altura do lado direito ficou maior que a do lado esquerdo, pois a água é menos densa que o óleo.
(E) As alturas ficaram iguais.

12ª Questão. Os reservatórios de água da SABESP, possuem alimentação com a água de nascentes e das chuvas. Suponha que um reservatório de volume total 2.10^6 m³ esteja com 20% de sua capacidade, e que a água bombeada pela SABESP seja de 2.10^3 m³/h. Sabendo-se que as nascentes e as chuvas repõem 1.5.10^3 m³/h, determine o tempo que o reservatório levará para atingir seu nível crítico, que é de 5% de sua capacidade. Obs.: desconsiderar evaporação.

(A) 30 dias
(B) 25 dias
(C) 20 dias
(D) 15 dias
(E) 10 dias

13ª Questão. Em um calorímetro ideal foram misturados 100 g de água a 20°C com 200 g de água a 80°C. Após o equilíbrio térmico, qual é a temperatura da mistura (t_m)?

(A) t_m = 30°C
(B) t_m = 40°C
(C) t_m = 50°C
(D) t_m = 60°C
(E) t_m = 70°C

14ª Questão. Qual é a potência de um aquecedor onde na plaqueta de identificação está anotada a tensão de 220 V e a corrente de 11 A?

(A) P = 20 W
(B) P = 200 W
(C) P = 2.000 W
(D) P = 2.420 W
(E) P = 26.620 W
15ª Questão. Um motor elétrico possui potência \(P = 6.000 \, \text{W} \). Qual é o trabalho realizado por este motor em 1 hora?

\[
\begin{align*}
&\text{(A)} \quad W = 1,7 \, \text{J} \\
&\text{(B)} \quad W = 600,0 \, \text{J} \\
&\text{(C)} \quad W = 6.000,0 \, \text{J} \\
&\text{(D)} \quad W = 1,7 \times 10^4 \, \text{J} \\
&\text{(E)} \quad W = 21,6 \times 10^6 \, \text{J}
\end{align*}
\]

16ª Questão. Duas cargas puntiformes \(Q_1 = 2 \times 10^{-6} \, \text{C} \) e \(Q_2 = 4 \times 10^{-6} \, \text{C} \), estão fixas em pontos A e B separadas por uma distância \(d = 40 \, \text{cm} \) no vácuo. Sabendo-se que a constante eletrostática do vácuo é \(K_0 = 9 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \), podemos afirmar que:

\[
\begin{align*}
&\text{(A)} \quad \text{Existe uma força} \, F = 0,45 \, \text{N} \, \text{de repulsão entre as cargas.} \\
&\text{(B)} \quad \text{Existe uma força} \, F = 0,45 \, \text{N} \, \text{de atração entre as cargas.} \\
&\text{(C)} \quad \text{Existe uma força} \, F = 0,18 \, \text{N} \, \text{de repulsão entre as cargas.} \\
&\text{(D)} \quad \text{Existe uma força} \, F = 0,18 \, \text{N} \, \text{de atração entre as cargas.} \\
&\text{(E)} \quad \text{Existe uma força} \, F = 1,8 \, \text{N} \, \text{de repulsão entre as cargas.}
\end{align*}
\]

17ª Questão. Sobre a resistência de um condutor metálico, podemos afirmar que:

\[
\begin{align*}
&\text{(A)} \quad \text{É maior quanto maior a área a secção transversal do condutor.} \\
&\text{(B)} \quad \text{É menor quanto maior o comprimento do condutor.} \\
&\text{(C)} \quad \text{É maior quanto menor a resistividade do material.} \\
&\text{(D)} \quad \text{É menor quanto maior a área a secção transversal do condutor.} \\
&\text{(E)} \quad \text{Não depende do comprimento.}
\end{align*}
\]

18ª Questão. Qual é a resistência equivalente do circuito abaixo?

\[
\begin{align*}
&\text{(A)} \quad \text{Req} = 4R \\
&\text{(B)} \quad \text{Req} = 3R \\
&\text{(C)} \quad \text{Req} = 4R^2 \\
&\text{(D)} \quad \text{Req} = 3R^2 \\
&\text{(E)} \quad \text{Req} = 2,5R
\end{align*}
\]
19ª Questão. Um condutor reto longo é percorrido por uma corrente I = 2 A. Qual é o módulo do campo magnético gerado em um ponto situado a 10 cm do condutor?

Dados: $\mu_0 = 4\pi \cdot 10^{-7} \frac{Tm}{A}$

(A) $B = 2 \cdot 10^{-6} T$
(B) $B = 3 \cdot 10^{-6} T$
(C) $B = 4 \cdot 10^{-6} T$
(D) $B = 5 \cdot 10^{-6} T$
(E) $B = 10 \cdot 10^{-6} T$

20ª Questão. Um raio luminoso ao passar do ar para um meio x, sofre refração conforme indicado na figura. Qual é aproximadamente o índice de refração do meio x? Dados: $n_{ar} = 1$

(A) $n_x = 1,1$
(B) $n_x = 1,3$
(C) $n_x = 1,4$
(D) $n_x = 1,7$
(E) $n_x = 2,0$

![Diagrama de refração](image-url)
QUÍMICA

21ª Questão. Sabendo-se que o número atômico do cálcio (Ca), é igual a 20, qual a distribuição eletrônica, em subniveis, para o cátion Ca$^{2+}$?

(A) $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^2$

(B) $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2$

(C) $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3d^6$

(D) $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6$

(E) $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 4s^2$

22ª Questão. Como sabemos, um dos elementos encontrados no leite é o cálcio (Ca), que apresenta 20 prótons e pode ter 20 nêutrons no núcleo. O número atômico de um elemento X, com 22 nêutrons e isóbaro do átomo de cálcio indicado, é:

(A) 18
(B) 19
(C) 20
(D) 21
(E) 22

23ª Questão. Qual dos itens abaixo apresenta somente elementos metálicos?

(A) Fósforo, ouro e prata.
(B) Iodo, carbono e níquel.
(C) Estrôncio, manganês e chumbo.
(D) Hidrogênio, enxofre e lantânio.
(E) Bismuto, enxofre e césio.

24ª Questão. Qual o tipo de ligação presente respectivamente, nos seguintes compostos NaBr, SO$_2$, e I$_2$?

(A) Covalente apolar, iônica e covalente polar.
(B) Covalente polar, covalente apolar e iônica.
(C) Covalente polar, iônica, covalente e apolar.
(D) Iônica, covalente polar e covalente apolar.
(E) Iônica, covalente apolar e covalente polar.
25ª Questão. Um sistema constituído por água no estado líquido e 3 cubos de gelo, pode ser classificado como:

(A) Sistema homogêneo, 4 fases e 2 componentes.
(B) Sistema heterogêneo, 2 fases e 1 componente.
(C) Sistema homogêneo, 2 fases e 1 componente.
(D) Sistema heterogêneo, 3 fases e 2 componentes.
(E) Sistema heterogêneo, 4 fases e 2 componentes.

26ª Questão. A ferrugem é produto do processo de corrosão em peças de aço em contato com:

(A) Nitrogênio e oxigênio.
(B) Oxigênio e hidrogênio.
(C) Dióxido de carbono e água.
(D) Oxigênio e água.
(E) Nitrogênio e água.

27ª Questão. No processo de obtenção do aço ocorre a seguinte reação:

\[\text{Fe}_2\text{O}_3 + 3\text{CO} \rightarrow 3\text{CO}_2 + 2\text{Fe} \]

Nesta reação o monóxido de carbono (CO), está atuando como:

(A) redutor.
(B) catalisador.
(C) oxidante.
(D) emulsionante.
(E) dispersante.

28ª Questão. Qual a massa molar de um gás, cuja a densidade a 20°C e 1 atm, é igual a 1,83g/L?

Dado: \(R = 0,082 \text{ atm} \times \text{L/mol} \times \text{K} \)

(A) 40
(B) 38
(C) 48
(D) 32
(E) 44
29ª Questão. Num balão de 5L de capacidade, mantido a temperatura T, existem 2 mols de argônio à pressão de 3 atm. Quantos mols de argônio estariam armazenados nesse mesmo balão, mantendo-se constante a temperatura e com pressão de 6 atm?

(A) 2
(B) 1
(C) 3
(D) 4
(E) \(\frac{1}{2} \)

30ª Questão. O composto abaixo, apresenta:

\[
\begin{align*}
\text{CH}_3 \\
\text{H}_3\text{C} & \quad \text{C} & \quad \text{CH}_3 \\
\text{NH}_2
\end{align*}
\]

(A) um carbono quaternário.
(B) cadeia carbônica insaturada.
(C) somente carbonos primários.
(D) cadeia carbônica heterogênea.
(E) três carbonos primários e um terciário.

31ª Questão. Qual dessas substâncias abaixo contém átomos de oxigênio em sua estrutura?

(A) ácido acético
(B) tolueno
(C) benzeno
(D) etano
(E) naftaleno

32ª Questão. Um composto orgânico oxigenado, que reage com uma solução aquosa de hidróxido de sódio, pode ser:

(A) um álcool ou um aldeído.
(B) um ácido carboxílico ou um fenol.
(C) um fenol ou um álcool.
(D) um aldeído ou ácido carboxílico.
(E) apenas um álcool.
33ª Questão. O poliestireno é um polímero muito utilizado na indústria de borracha e é obtido a partir da polimerização do estireno, que pode ser obtido pela reação entre:

(A) benzeno e etileno.
(B) tolueno e etileno.
(C) benzeno e 1-propeno.
(D) tolueno e 1-propeno.
(E) tolueno e benzeno.

34ª Questão. Os sabões podem ser obtidos pela reação de:

(A) açúcares e soda cáustica.
(B) gorduras e soda cáustica.
(C) álcoois com ácido sulfúrico.
(D) glicerina com ácido fosfórico.
(E) carvão com ácido nítrico.

35ª Questão. O álcool obtido em maior quantidade na fermentação alcoólica do açúcar é o:

(A) álcool metílico.
(B) álcool amílico.
(C) álcool etílico.
(D) álcool benzílico.
(E) álcool álcalico.

36ª Questão. São feitas as seguintes afirmações em relação à eletrólise da água:

I. Deve-se adicionar ácido, pois a água pura é muito pouca condutora.
II. No catodo ocorre desprendimento de gás hidrogênio.
III. No anodo ocorre desprendimento de gás oxigênio.
IV. O volume de gás oxigênio recolhido é o dobro do de gás hidrogênio.

São corretas somente as afirmativas:

(A) I, II e IV.
(B) I e IV.
(C) II, III e IV.
(D) II e IV.
(E) I, II e III.
37ª Questão. Considere o seguinte equilíbrio em solução aquosa, que se estabelece quando o indicador ácido-base (Hind), é acrescentado à água:

\[\text{Hind}_{(aq)} \rightleftharpoons H^+_{(aq)} + \text{Ind}^-_{(aq)} \]

Incolor Vermelho

A intensidade da cor da solução aumentará borbuleando-se na solução:

(A) CO
(B) CO₂
(C) CH₄
(D) H₂S
(E) NH₃

38ª Questão. A adição de NaCl a uma solução de HCl:

(A) aumenta o pH.
(B) não interfere na acidez do meio.
(C) cristaliza o HCl.
(D) elimina o HCl.
(E) diminui o pH.

39ª Questão. Considere os seguintes processos:

I. Vaporização.
II. Condensação.
III. Fusão.

À temperatura constante, há liberação de energia apenas:

(A) no processo I.
(B) no processo II.
(C) nos processos II e III.
(D) nos processos I e III.
(E) no processo III.

40ª Questão. Num processo reativo, uma substância que, por sua presença, aumenta a velocidade de uma reação entre outras substâncias, é chamada de:

(A) reagente.
(B) produto.
(C) catalisador.
(D) subproduto.
(E) líquido.
BIOLOGIA

41ª Questão. Leia atentamente a frase abaixo:
"Cada célula do nosso corpo contém um genoma completo em seu núcleo, um par de cada um dos cromossomos." A frase exclui as células:
(A) germinativas
(B) nervosas
(C) musculares
(D) epiteliais
(E) ósseas

42ª Questão. Helianfora é uma planta insetívora que captura insetos para se alimentar. A relação ecológica citada é a de:
(A) sociedade
(B) inquilinismo
(C) mutualismo
(D) predação
(E) esclavagismo

43ª Questão. A criação de gansos, corujas e seriemas em sítios e fazendas, evita a proliferação de cobras junto às casas e lugares de lazer. Essas aves são também chamadas de:
(A) ofiófagos
(B) fagócitos
(C) antilaquéticos
(D) anticrotálicos
(E) loxosceles

44ª Questão. Os liquens crescem onde há pouca competição entre as plantas. Os liquens são organismos pioneiros, isto é, são os primeiros que se fixam numa rocha nua, dando início a uma sucessão ecológica. Os liquens são associações entre:
(A) algas e samambaias
(B) algas e musgos
(C) musgos e fungos
(D) musgos e samambaias
(E) algas e fungos
45ª Questão. Um aluno da FEI ao prestar um serviço social no sertão nordestino descreveu que a vegetação da região se caracteriza pela presença de arbustos de pouca folhagem, caules retorcidos e por escassa vegetação rasteira. Observou também alguns animais identificados abaixo. Assinale a alternativa que apresenta animais da região descrita pelo aluno.

(A) gralha azul, jibóia, tucano
(B) cutia, harpia, jaguatirica
(C) anta, mico-leão-dourado, quati
(D) sapo cururu, asa branca, preá
(E) pacas, lobo guará, lobeira

Responda as questões 46 e 47 baseando se no trecho da poesia abaixo

A Flor do Maracujá
Pel as rosas, pelos lírios,
Pelas abelhas, sinhá,
Pelas notas mais chorosas
Do canto do sabiá
Pelo cálice de angústias
Da flor do maracujá.
Pelo jasmim, pelo goivo,
Pelo agreste manacá,
Pelas gotas de sereno
Nas folhas do gravatá,
Pela coroa de espinhos
Da flor do maracujá. ...

Trecho da Antologia Poética de Fagundes Varela

46ª Questão. Sabe-se que as flores citadas no texto são polinizadas por animais. A polinização realizada por insetos e aves são denominadas:

(A) entomofilia e anemofilia
(B) ornitofilia e diogamia
(C) entomofilia e ornitofilia
(D) anemofilia e dicogamia
(E) hidrofilia e quiropterofilia
47ª Questão. "... Pelo cálice de angustias
Da flor do maracujá"

O cálice de uma flor é um conjunto de folhas modificadas chamadas de:

(A) corola
(B) estigma
(C) estilete
(D) carpelos
(E) sépalas

48ª Questão. Brasileira é premiada por estudo sobre mal de Chagas
Lucia Previato está entre as cinco cientistas ganhadoras do L’Oreal-Unesco (2004) que recebeu o prêmio, por sua pesquisa sobre a bioquímica do Trypanosoma cruzi.

A respeito do assunto, assinale a alternativa correta:

(A) Trypanosoma cruzi é adquirido pela ingestão de alimentos contaminados pelo percevejo, o barbeiro.
(B) Trypanosoma cruzi é um protozoário transmitido por um percevejo, o barbeiro.
(C) O barbeiro infecta uma pessoa ao defecar próximo à picada, deixando em suas fezes ovos do verme Trypanosoma cruzi.
(D) Trypanosoma cruzi vive em solos úmidos e invade o corpo de uma pessoa quando esta entra em contato com este solo.
(E) O Trypanosoma cruzi depois de atacar o figado por alguns dias ele se aloja no coração.

49ª Questão. O Reino Monera tem como característica uma grande variedade de formas de nutrição. É exclusivo do Reino Monera:

(A) fotossíntese
(B) fermentação
(C) fixação de nitrogênio
(D) respiração aeróbica
(E) decomposição
50ª Questão. “Há uma criação de cabras que produzem em seu leite uma proteína da teia de aranha”. Nessas cabras foi introduzido um gene de aranha, responsável pela formação da proteína. Após ser purificada do leite das cabras, essa proteína é utilizada na fabricação de fibras tão resistentes que foram batizadas de bioferro, e que são utilizadas na confecção de coletes à prova de bala e de partes de automóveis e aeronaves. Os organismos que contêm algum gene adicional, introduzido por intervenção humana, em seu genoma é chamado de:

(A) clonado
(B) transgênico
(C) terapêutico
(D) mutagênico
(E) lugênico
HISTÓRIA E GEOGRAFIA

51ª Questão. A vinda da Corte portuguesa para o Rio de Janeiro em 1808 alterou a fisionomia da cidade colonial e provocou uma série de efeitos – alguns bastante duradouros – na nova capital e na colônia. Podem ser consideradas conseqüências da vinda da família real para o Brasil, exceto:

(A) O aumento da população urbana no Rio de Janeiro, já que, além dos membros da Corte, afundiam a cidade inúmeros imigrantes portugueses, franceses e ingleses.
(B) A abertura de teatros, bibliotecas e a fundação do primeiro jornal editado na colônia.
(C) A vinda de inúmeros artistas e cientistas europeus, sendo marcante a presença da Missão Francesa, em 1816, tendo entre seus integrantes os pintores Taunay e Debret.
(D) A fundação do primeiro Banco do Brasil.

52ª Questão. No longo processo que levou à abolição da escravidão no Brasil diversas leis visando a abolição controlada e gradual foram feitas ao longo do século XIX. A alternativa que apresenta a sequência temporal correta das leis é:

(A) Lei Eusébio de Queirós – Lei do Ventre Livre – Lei Áurea – Lei dos Sexagenários.
(B) Lei Eusébio de Queirós – Lei dos Sexagenários – Lei do Ventre Livre – Lei Áurea.
(C) Lei Eusébio de Queirós – Lei do Ventre Livre – Lei dos Sexagenários – Lei Áurea.
(D) Lei do Ventre Livre – Lei dos Sexagenários – Lei Eusébio de Queirós – Lei Áurea.
(E) Lei Eusébio de Queirós – Lei Áurea – Lei do Ventre Livre – Lei dos Sexagenários.
53ª Questão. A partir da Guerra do Paraguai o exército brasileiro ganhou expressão nacional. Em vários momentos subsequentes da história brasileira encontramos intervenções militares nos processos políticos. Todas as alternativas abaixo contemplam momentos como os citados, exceto:

(A) A proclamação da República.
(B) A Revolução de 30.
(C) O fim do Estado Novo.
(D) A eleição de Tancredo e Sarney.
(E) O golpe de 64.

54ª Questão. Os povos da Antiguidade desenvolveram religiões diferenciadas, mas marcadas pelo politeísmo. Apenas um povo desenvolveu uma religião monoteísta, que acabou se tornando a base de outras crenças. O povo a que nos referimos é o povo:

(A) egípcio
(B) hebreu
(C) assírio
(D) fenício
(E) hitita

55ª Questão. “É um privilégio para um escritor ter presenciado o fim de três estados: a República de Weimar, o Estado Fascista e a RDA. Não creio que eu viva o bastante para ver o fim da República Federal.”

Heiner Muller

A que país o autor da frase acima faz referência?

(A) Alemanha
(B) Inglaterra
(C) Áustria
(D) Itália
(E) Polônia
56ª Questão. A contaminação de rios pelo metal é um dos maiores problemas ambientais em áreas de garimpo do ouro. Seu efeito sobre a fauna e a flora são terríveis e o consumo de alimentos contaminados pode levar a uma série de doenças graves.

O metal que é o agente da contaminação acima descrita é o(a):

(A) mercúrio.
(B) manganês.
(C) urânio.
(D) bauxita.
(E) tungstênio.

57ª Questão. O horário de verão, adotado no Brasil entre meados de outubro a meados de fevereiro, tem por objetivo:

(A) Reduzir o consumo de energia elétrica principalmente nos estados do centro-oeste e do nordeste, já que essas áreas são as que mais sentem o prolongamento do dia, ocasionado pelo adiantamento dos relógios em uma hora.
(B) Permitir uma “sobra” de energia, que pode ser negociada com os países do Mercosul.
(C) Reduzir o consumo de energia em todo o território nacional, mas especialmente nos grandes centros urbanos do nordeste e do sudeste.
(D) Reduzir o preço da energia elétrica, provocado pelo aumento de sua oferta.
(E) Reduzir o consumo de energia elétrica principalmente nos estados do centro-sul e nas grandes metrópoles como São Paulo e Rio de Janeiro.

58ª Questão. “É uma mata que acompanha o curso dos rios que cortam o cerrado, onde são muito freqüentes, e a caatinga. Nas áreas próximas às margens dos rios perenes, o solo é permanentemente úmido, criando condições para o desenvolvimento da mata.”

O texto se refere à(ao):

(A) mangue.
(B) mata ciliar ou galeria.
(C) capão.
(D) mata dos cocais.
(E) pradaria.
59ª Questão. No século XIX afirmava-se que, no Império Britânico, o sol nunca se punha. Mesmo após as descolonizações no século XX, a Inglaterra continuou sendo o centro de uma comunidade denominada Commonwealth, que congrega, além da Inglaterra, da Escócia, do País de Gales e da Irlanda do Norte, uma série de ex-colônias britânicas, exceto:

(A) Canadá.
(B) Austrália.
(C) Bermudas.
(D) Estados Unidos.
(E) Belize.

60ª Questão. As altas cordilheiras existentes no globo são resultado do choque entre as placas continentais e oceânicas e são relativamente recentes (têm cerca de 65 milhões de anos).

Assinale a alternativa que apresenta as cadeias montanhosas a que o texto se refere nos continentes asiático, americano e africano, respectivamente:

(A) Himalaia, Montanhas Rochosas e Alpes.
(B) Himalaia, Andes e Alpes.
(C) Himalaia, Andes e Atlas.
(D) Andes, Himalaia e Montanhas Rochosas.
(E) Andes, Atlas e Himalaia.